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Photonic band structures solved by a plane-wave-based transfer-matrix method
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Transfer-matrix methods adopting a plane-wave basis have been routinely used to calculate the scattering of
electromagnetic waves by general multilayer gratings and photonic crystal slabs. In this paper we show that
this technique, when combined with Bloch’s theorem, can be extended to solve the photonic band structure for
2D and 3D photonic crystal structures. Three different eigensolution schemes to solve the traditional band
diagrams along high-symmetry lines in the first Brillouin zone of the crystal are discussed. Optimal rules for
the Fourier expansion over the dielectric function and electromagnetic fields with discontinuities occurring at
the boundary of different material domains have been employed to accelerate the convergence of numerical
computation. Application of this method to an important class of 3D layer-by-layer photonic crystals reveals
the superior convergency of this different approach over the conventional plane-wave expansion method.
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I. INTRODUCTION

Photonic crystals, a novel class of material where the
fractive index is periodic in space, have stimulated extens
interest of study in recent years. Characterized by photo
band structures and photonic band gaps, these materials
mold the flow of photons much like conventional semico
ductors do to electrons. Armed with unprecedented powe
control the light propagation behavior through a variety
optical functional elements such as waveguides, cavit
bends, and branches in sizes comparable to the wavele
of light, photonic crystals can serve as the platform for futu
integrated optical circuits@1–3#.

A basic while important tool to understand the charact
istic of a photonic crystal is the photonic band structu
which represents the dispersion of photons~called Bloch’s
photons! with respect to their propagation directions and p
larization states. A frequency range in the photonic ba
structure within which no photons exist irrespective of t
direction and polarization is called a complete photonic ba
gap. Numerous theoretical approaches have been devel
in literatures to calculate the photonic band structure for tw
dimensional~2D! and three-dimensional~3D! photonic crys-
tals. These include conventional plane-wave expans
method ~PWM! @4–6#, real-space transfer-matrix metho
~TMM ! @7,8#, finite-difference time-domain method@9#, and
Korringa-Kohn-Rostoker~KKR! method @10–14# for sys-
tems built from spherical or cylindrical particles. Differe
from the conventional PWM, the real-space TMM@7,8# and
the KKR methods@11,12,14# look upon the photonic crysta
as an infinite stack of identical periodic crystal layers alon
certain direction, and thus an infinitely thick grating. Corr
spondingly, Maxwell’s equations are solved within eve
single layer, and electromagnetic~em! fields among different
layers are connected to each other through a transfer ma
Recently, within the general framework of transfer-mat
formulation, various approaches have been exploited w
different types of basis functions used to represent the
fields, including the Rayleigh multipoles@14#, analytical
modal functions@15#, and Fourier modal functions~also
called plane-wave functions! @15–20#. In addition to solution
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of photonic band structures, the TMM can also handle
wave scattering by a photonic crystal slab, leading to
transmission and reflection spectra, quantities directly
served experimentally, an advantage over the more pop
conventional PWM.

In this paper, we will investigate in detail the plane-wa
based TMM and apply this approach to calculate the pho
nic band structures for 2D and 3D photonic crystals w
arbitrary lattice types and unit cell configurations. Three d
ferent numerical schemes to solve the eigenproblem lea
to traditional band diagrams@plotted along the high-
symmetry lines of the first Brillouin zone~BZ!# will be pro-
posed and discussed. Comparison will be made between
current method and the conventional PWM regarding
numerical convergency. This paper is arranged as follows
Sec. II and Appendixes A and B, we give a brief descripti
of the plane-wave based TMM in application to wave sc
tering by 2D and 3D photonic crystal slabs, and correspo
ing eigenproblem connected with the photonic band str
ture. Two different eigenproblem schemes are discussed
Sec. III, we will illustrate how to construct the traditiona
band diagrams by looking at different layer stacking dire
tions for 2D and 3D photonic crystals. In Sec. IV we co
sider a 3D layer-by-layer photonic crystal to show how
build the whole band diagram by only looking at one sing
stacking direction. In Sec. V we further discuss third eige
problem scheme, which combines the merits of the first t
schemes. In Sec. VI we conclude this paper.

II. PLANE-WAVE-BASED TMM FOR WAVE SCATTERING
AND PHOTONIC BAND STRUCTURE SOLUTIONS

In a general wave scattering problem, we suppose a p
em wave is incident from the left-hand side on a photo
crystal slab placed in an air background. Let the wave pro
gate along thez-axis direction, the incident wave vector
k05(k0x ,k0y ,k0z). For the present, we consider a gene
three-dimensional~3D! photonic crystal slab, correspondin
to which we are dealing with the scattering problem of e
©2003 The American Physical Society07-1
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waves by a 2D grating. The situation of a 2D photonic cr
tal slab~and thus the scattering problem of a 1D grating! can
be directly derived from the 3D case. See Appendixes A
B. Let the primitive latticeR of the grating in theXY plane
has two unit vectorsa1 anda2, and the corresponding recip
rocal latticeG has two unit vectors ofb1 andb2.

The em fields at an arbitrary pointr can be written into
the superposition of Bragg waves~or plane waves!:

E~r !5(
i j

Ei j ~z!ei (ki j ,xx1ki j ,yy), ~1!

H~r !5(
i j

H i j ~z!ei (ki j ,xx1ki j ,yy), ~2!

where the Bragg wave vectork i j 5(ki j ,x ,ki j ,y)5(k0x ,k0y)
1 ib11 j b2 , Ei j , and H i j are unknown expansion coeffi
cients of the electric and magnetic fields. In principle, t
indicesi andj should run from2` to 1`, but in numerical
practice, truncation over a certain order is necessary.
solve the unknown variablesEi j andH i j , the whole photonic
crystal slab is divided into a number of thin slices, as sho
in Fig. 1~a!, where each slice can be approximated a
lamellar 2D grating, within which the dielectric function
constant along thez-axis direction. If the slab has alread
been a lamellar grating, no division procedure is requir
We further imagine that each slice~indexed from 1,2, . . . , to
n) is surrounded by an infinitely thin film of air in both han
sides. This amounts to place the whole diffraction probl
into a plane-wave basis in the air background. With a z
thickness, these artificial air thin films will generate no im
pact to the diffraction problem.

As shown in Fig. 1~b!, the em fields in the two air thin
films around thei th slice is both consisting of forwards an

FIG. 1. ~a! Definition of the S matrix in the transfer-matrix
method for a photonic crystal slab, which is divided into a num
of thin slices.~b! Definition of theS matrix for an individual slice.
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backwards propagating plane waves. The tangential com
nents of the electric field in the left hand-side air film can
written into

Ex(y)~r !5(
i j

@Ei j ,x(y)
1 ~z!1Ei j ,x(y)

2 ~z!#eiki j ,xx1 iki j ,yy, ~3!

where Ei j ,x(y)
1 (z)5Ei j ,x(y)

1 eib i j (z2zi 21)5Ei j ,x(y)
1 , Ei j ,x(y)

2 (z)
5Ei j ,x(y)

2 e2 ib i j (z2zi 21)5Ei j ,x(y)
2 , sincez5zi 21 . b i j is given

by b i j 5(k0
22ki j ,x

2 2ki j ,y
2 )1/2 for k0

22ki j ,x
2 2ki j ,y

2 >0, andb i j

5 i (ki j ,x
2 1ki j ,y

2 2k0
2)1/2 for k0

22ki j ,x
2 2ki j ,y

2 ,0. The tangen-
tial components of the magnetic field are

Hx(y)~r !5(
i j

@Hi j ,x(y)
1 ~z!1Hi j ,x(y)

2 ~z!#eiki j ,xx1 iki j ,yy,

~4!

where Hi j ,x(y)
1 (z)5Hi j ,x(y)

1 eib i j (z2zi 21)5Hi j ,x(y)
1 , Hi j ,x(y)

2 (z)
5Hi j ,x(y)

2 e2 ib i j (z2zi 21)5Hi j ,x(y)
2 . For each Bragg wave

vector we have the following relation between theH
and E fields: (Hi j ,x

1 ,Hi j ,y
1 )T5T0,i j (Ei j ,x

1 ,Ei j ,y
1 )T, and

(Hi j ,x
2 ,Hi j ,y

2 )T52T0,i j (Ei j ,x
2 ,Ei j ,y

2 )T, where the superscrip
‘‘ T’’ denotes matrix transposition. The 232 matrix T0,i j has
matrix elements T0,i j

11 52ki j ,xki j ,y /(k0b i j ), T0,i j
12 5(ki j ,x

2

2k0
2)/(k0b i j ), T0,i j

21 5(k0
22ki j ,y

2 )/(k0b i j ), and T0,i j
22

5ki j ,xki j ,y /(k0b i j ). The em fields in the right-hand side a
film have the same form of expansion. In Eqs.~3! and~4! we
simply replaceEi j ,x(y)

6 andHi j ,x(y)
6 with Ui j ,x(y)

6 andVi j ,x(y)
6 ,

respectively.Vi j ,x(y)
6 and Ui j ,x(y)

6 are also connected to eac
other through the 232 matrix T0,i j .

Having written down the em fields around the slice, w
need to further solve the em fields inside the 2D lame
grating slice. The procedure has been described in App
dixes A and B. By defining column vectorsV i 21

6

5(•••,Ei j ,x
6 ,Ei j ,y

6 ,•••)T, V i
65(•••,Ui j ,x

6 ,Ui j ,y
6 ,•••)T,

where 2N< i<N, 2M< j <M , with N and M being the
truncation orders, we have

S V i
1

V i
2D 5TiS V i 21

1

V i 21
2 D . ~5!

Ti is called the transfer matrix~more accurately, the
T-matrix! for the i th slice. The overallT matrix for the whole
slab is simply given byT5TnTn21•••Ti•••T2T1, a simple
multiplication. Although simple in nature, thisT-matrix
method proves to be numerically unstable for thick gratin
such as the photonic crystal slabs studied here. The reas
that the evanescent wave components in the plane-wave
pansion will increase exponentially when theT matrices for
all slices accumulate, as can be found in Appendix A. O
scheme to overcome this numerical instability is t
scattering-matrix (S-matrix! method@7,8,20#. In this method,
the transfer matrix for thei th slice in Eq.~5! is redefined as

S V i
1

V i 21
2 D 5siS V i 21

1

V i
2 D . ~6!

r
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si is called theS matrix for slice i. The overallS matrix of
the whole slabS is connected to individualsi through a
simple iteration algorithm@7,8,20#. When the overallS ma-
trix is solved, one can easily obtain the transmission a
reflection coefficients for the grating slab under arbitrary
cidence conditions.

With the layer transfer matrix at hand, we can direc
solve the photonic band structure. Assume the primitive
tice vectors of a 3D photonic crystal area1 , a2, anda3. Note
that these three vectors are not necessarily orthogonal to
other for a general lattice, say, a face-centered cubic~fcc! or
face-centered tetragonal~fct! lattice. We can always set th
plane formed bya1 anda2 as theXOY plane, which means
that in this plane we have a 2D lattice with primitive lattic
vectorsa1 anda2. The corresponding reciprocal lattice ve
tors areb152p(a23 ẑ)/@(a13a2)• ẑ#, b252p( ẑ3a1)/@(a1

3a2)• ẑ#, and a general reciprocal vector is given byGi j
5 ib11 j b2. The whole infinite photonic crystal is looke
upon as an infinite number of layers stacking along thez-axis
direction, every layer having the same primitive lattice ve
tors (a1 anda2) and reciprocal lattice vectors (b1 andb2).

The key to jump from a general wave scattering probl
to a photonic band structure problem is to impose a perio
boundary condition along the stacking direction of the in
nite grating. According to Bloch’s theorem, the field atr is
connected to the field atr1R through u(r1R)
5eik•Ru(r ), whereu is one of the components of eitherE
field or H field, k5(kx ,ky ,kz) is the Bloch’s wave vector
and R is a lattice vector of the 3D lattice. The period
boundary condition along thez-axis direction leads to

u~r1a3!5eik•a3u~r !. ~7!

Thus we need to work out the transfer matrix connecting
field at r and r1a3. Remember that in Eqs.~5! and ~6! the
transfer matrix is strictly propagating along the stacking
rection, namely, thez axis. Thus, after we get the transf
matrix connectingu(x,y,z0) andu(x,y,z01a3,z), we should
further phase shiftu(x,y,z01a3,z) to u(x1a3,x ,y1a3,y ,z0
1a3,z). Observing that u(x,y,z01a3,z)5(ui j (z0
1a3,z)exp@ikij ,xx1ikij ,yy#, and u(x1a3,x ,y1a3,y ,z01a3,z)
5(ui j (z01a3,z) exp@ikij ,x a3,x1 ik i j ,ya3,y# exp@ikij ,x x1ikij ,yy#,
we can easily find out the transformation rule of both theT
matrix andSmatrix under this phase shift. Another importa
point is that in application of the transfer-matrix techniqu
the Bragg wave vectors for the 2D lattice in theXOY plane
should take (ki j ,x ,ki j ,y)5(kx1Gi j ,x ,ky1Gi j ,y).

After the transfer matrix connectingu(r1a3) andu(r ) is
finally settled down, we are ready to move forward to so
the photonic band structure. Denoting the column vecto
the fields in the both hand sides of the primitive unit cell
(V1

1 ,V1
2) and (V0

1 ,V0
2), in the T-matrix algorithm we

write

S V1
1

V1
2D 5TS V0

1

V0
2D . ~8!
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From Bloch’s theorem Eq.~7!, we haveV1
15eik•a3V0

1 and
V1

25eik•a3V0
2 . Then Eq.~8! becomes

TS V0
1

V0
2D 5eik•a3S V0

1

V0
2D , ~9!

which means that Bloch’s phase factor is the eigenvalue
the T matrix for a unit cell of the photonic crystal layer. T
appreciate numerical stability, we need to turn to t
S-matrix algorithm. From equation

S V1
1

V0
2D 5SS V0

1

V1
2D 5S S11 S12

S21 S22
D S V0

1

V1
2D , ~10!

and using Bloch’s theorem, we can derive

S S11 0

S21 2I D S V0
1

V0
2D 5eik•a3S I 2S12

0 2S22
D S V0

1

V0
2D . ~11!

Equation~11! is a standard form of generalized eigenpro
lem Ax5lBx, whereA andB are both square matrices,l is
the eigenvalue, andx is the eigenvector. It can be solved b
standard eigensolution algorithms such as those provide
the LAPACK libraries. Equation~11! can be written into an-
other form

F S S11 0

S21 2I D 2eik•a3S I 2S12

0 2S22
D G S V0

1

V0
2D 5PS V0

1

V0
2D 50.

~12!

Then the eigenproblem is solved by setting det(P)50, or in
another way by finding the zero eigenvalue of the matrixP.

Now we have two schemes for solving the same eig
problem, scheme 1@Eq. ~11!# and scheme 2@Eq. ~12!#. In
scheme 2, Bloch’s wave vector (kx , ky , kz) is given explic-
itly as input, the unknown variable isv. Therefore, it can be
classified asv5 f (kx ,ky ,kz), similar to the conventiona
PWM. However, there is a big difference. In the curre
scheme, the eigenmatrix itself involves the unknown eig
value v. Therefore, the standard eigenproblem solution
gorithm is not applicable, instead, one should use other r
searching algorithms of nonlinear equations to find
eigenvalues. There is a merit as compensation for this
merical inconvenience: the current scheme can effectiv
deal with dispersive materials wheree is dispersive with
respect to the frequency. Obviously, using this scheme,
can account for the conventional photonic band structu
~diagrams plotted along all high-symmetry lines in the fi
BZ! by only carrying out transfer-matrix calculations along
single stacking direction.

In comparison, scheme 1 can be categorized askz
5 f (v,kx ,ky), with v and lateral Bloch’s wave vector (kx
andky) explicitly given as an input, whilekz left to be de-
termined.kz must be a real number, implying that the eige
value eik•a3 must be a complex number of unity modulu
The same concept and principle of this scheme has b
widely used in literatures@7,8,11–15#, which is called the
on-shell approach. In our numerical experiences, the ca
7-3
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lated eigenvalue corresponding to a Bloch’s mode is alw
of a modulus different from unity within 10210. Scheme 1
can also apply to dispersive materials. Compared w
scheme 2, scheme 1 is most numerically economic to s
the photonic band structure along a prefixed line in the fi
BZ parallel to the layer stacking direction. In this case,kx
5const, ky5const, andkz5 f (v). For example, for an fcc
lattice, the G-X band is solved by considering the~100!
stacking direction of the crystal layers, while theG-L band
should be solved by using the~111! stacking direction. In the
following we will use scheme 1 to solve the photonic ba
structure for 2D photonic crystals composed of dielec
cylinders arrayed in square and triangular lattices, and
photonic crystal consisting of cubic lattice of spherical p
ticles. We will use scheme 2 to treat a 3D layer-by-lay
photonic crystal arranged in an fct lattice.

III. PHOTONIC BAND STRUCTURES FOR SIMPLE 2D
AND 3D LATTICES

The 2D photonic crystal under study is a square lattice
dielectric cylinders in air, where the cylinder has a refract
index of n53.4 and a radius ofr 50.2a, where a is the
lattice constant of the photonic crystal. In the tradition
band diagram for a square lattice, the dispersion is calcul
along the high-symmetry lines ofG-X-M -G, where G
5(0,0), X5(p/a,0), M5(p/a,p/a) are high-symmetric
points in the first BZ. These three points and correspond
equivalent points are schematically depicted in the inse
Fig. 2, where only one quarter of the first BZ is displaye
Because we prefer to use scheme 1 in Sec. II to solve
photonic band structure, we have set linesG-X andX-M in a
way that they are both parallel to the~01! crystal direction,
because of lattice symmetry. Then, we carry out trans
matrix calculation along the~01! stacking direction of the
cylinder layer. In this direction, the 1D grating has a peri
of a. The primitive lattice vector isa15(a,0), and another
primitive lattice vector along thez axis isa25(0,a). For the
G-X line, we setkx50, while for theX-M line, we setkx
5p/a. The unit-cell thick layer is consisting of two region

FIG. 2. Diagram of photonic band structures calculated by
plane-wave-based TMM for a 2D square lattice of dielectric cyl
ders in air under the TM polarization mode. The cylinder ha
refractive index ofn53.4, and a radius ofr 50.2a, wherea is the
lattice constant of the photonic crystal. The inset denotes one q
ter of the first BZ of the square lattice.
04660
s

h
ve
t

c
D
-
r

f
e

l
ed

g
f

.
he

r-

one is the cylinder slab with a thickness of 2r , the other is an
a22r thick air slab. To calculate the transfer matrix, th
cylinder slab is further divided into 10 equal-spacing sm
slices, each one assumed to be a lamellar grating. The
rier expansion coefficients of the dielectric function are a
lytically calculated for each slice. The transfer matrix for t
air slab can be analytically derived. For theG-M line, we
should carry out the transfer-matrix calculation along t
~11! crystal direction. In this direction, the 1D grating has
period of A2a, with the primitive lattice vector beinga1

5(A2a,0). Another primitive lattice vector along thez-axis
direction isa25(1/2a,A2/2a), so there is a phase shift fo
the transfer matrix. With a layer-to-layer distance ofA2/2a,
the band edge is lying atkz5A2(p/a), which is just theG to
M distance.

The calculated photonic band structures are displaye
Fig. 2 for the TM~with the electric field parallel to the cyl
inder axis! polarization mode. A minimum frequency step
0.0005(2pc/a) is used in order to account for those fl
bands with small dispersion as well as modes close to
band gap edge. Up to 21 plane waves have been used i
transfer-matrix calculations. We have compared with cal
lations using the conventional PWM for 2D photonic cry
tals, and found good agreement between the two meth
For instance, the TMM finds a wide TM band gap openi
between frequencies 0.2855(2pc/a) ~at the M1 band! and
0.4200(2pc/a) ~at the X2 band!, see Fig. 3. Herec is the
light speed in vacuum. Calculations by means of the conv
tional PWM show that this TM band gap is lying betwee
0.286 and 0.421(2pc/a). The two results are very close. W
have also considered the TE mode, and find that the ag
ment between the two methods for the TE mode is sligh
degraded. We also consider photonic crystals arrayed in
triangular lattice, and find that application of lattice symm
try can also significantly reduce the numerical burden
transfer-matrix calculations.

Now we turn to a more complex structure, a 3D simp
cubic lattice of dielectric spheres in air, to see how we c
take advantage of the lattice symmetry to calculate the p

e
-
a

ar-

FIG. 3. Diagram of photonic band structures calculated by
plane-wave-based TMM for a 3D simple cubic lattice of dielect
spherical particles embedded in air. The particle has a refrac
index of n53.4, and a radius ofr 50.3a, wherea is the lattice
constant of the photonic crystal. Inset, first BZ of a simple cu
lattice and corresponding high-symmetry points.
7-4
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tonic band structure from as fewer as possible stacking
rection of crystal layers. Here we assume that the sphere
a radius of 0.3a and a refractive index of 3.4. The first BZ o
this crystal and some high-symmetry points are schem
cally displayed in the inset of Fig. 3. The traditional ba
diagram is plotted along the high-symmetry linesG-X-M -R.
Considering the lattice symmetry, we can select three disc
nected linesG-X8, X-M , andM 8-R as the equivalent alter
native. Since these three lines are all parallel to the~001!
direction of the crystal, we can use only one stacking dir
tion of the crystal layers to calculate the whole band d
gram. In this direction, the 2D grating is arrayed in a squ
lattice with primitive lattice vectorsa15(a,0,0) and a2
5(0,a,0), while the third primitive lattice vector along thez
axis is a35(0,0,a). For this very simple grating structure
we have carried out the transfer-matrix solution using
scheme ofkz5 f (v,kx ,ky) discussed in Sec. III. The photo
nic band structure using 939 plane waves are plotted in Fig
3. This crystal does not have a complete band gap, as is
known. It does have several directional band gaps along
G-X, namely, the~001! or other equivalent directions. If on
wishes to further consider the band diagram along theG-R
line, then one has to consider the~111! stacking direction of
the crystal layers. In this plane, the 2D grating is of a
triangular lattice with a lattice constant ofA2a.

IV. PHOTONIC BAND STRUCTURES FOR 3D
LAYER-BY-LAYER PHOTONIC CRYSTALS

We proceed further to consider a more complex 3D p
tonic crystal structure: a layer-by-layer photonic crys
@21,22#. This is an important class of photonic crystal stru
ture that has a complete band gap and has been realiz
experiment at the infrared and optical wavelengths. The
fore, it seems justified to carry out a detailed and deliber
examination by means of the new method. The configura
of the photonic crystal is schematically shown in Fig. 4~a!.
The photonic crystal is formed by stacking rectangular
electric rods layer by layer consecutively along the~001!
direction. Rods in each layer are arrayed into a 1D lame
grating with a pitch ofa. Rods in one layer are perpendicul
to those in the next layer, while rods in one layer are shif
by a/2 with respect to those in the next two layers. In t
~001! plane, the crystal is of a square lattice with a size oa.
Each rod is of widthw and of thicknessh, so that the axis
aspect of this crystal isc0 /a, where c054h is the pitch
along the~001! direction. The primitive unit cell of the 3D
photonic crystal is arrayed into a face-centered tetrago
~fct! lattice. In Fig. 4~a!, the coordinate frame~named as
XYZ) is selected in a natural way so that thex andy axes are
parallel to the two rod extension directions, respectively. T
coordinate frame~written asX8Y8Z8) for the conventional
tetragonal unit cell of an fct lattice is different, in that thex
andy axes are of 45° with respect to the rods. Thus, in
~001! plane, the crystal is still of a square lattice, but w
a size of a05A2a. The standard BZ for the fct lattice
as schematically in Fig. 4~b!, is also defined in this latte
coordinate frame. The coordinate of several high-symme
points are G(0,0,0), X(2p/a0,0,0), T(2p/a0,0,p/c0),
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L(p/a0 ,p/a0 ,p/c0), U(p/2a0 ,p/2a0 ,p/c0), and
Z(0,0,2p/c0). The whole band diagrams should run throu
these high-symmetry points.

For this complex 3D photonic crystal, if the eigenproble
solution scheme ofkz5 f (v,kx ,ky) is used to generate th
whole band diagram, several different crystal stacking dir
tions have to be considered separately. In addition, the st
tural symmetry involved in this layer-by-layer structure is f
lower than the fct lattice symmetry itself. This means that
cannot reduce the solution of the whole band diagrams
transfer-matrix calculations along only one or two crys
stacking directions, a way we have done to the simple cu
lattice of spheres. Therefore, we prefer to use the sch
v5 f (kx ,ky ,kz). Naturally, the transfer-matrix calculation i
performed along the~001! stacking direction of the crystal
In fact, as analyzed in Appendix C, the plane-wave exp
sion method functions optimally along this direction becau
of the special geometrical configuration: Each layer is
lamellar grating. Usage of deliberately developed Four
analysis techniques can guarantee fast convergency o
numerical computation. This is another major reason why

FIG. 4. ~a! Schematic configuration of a 3D layer-by-layer ph
tonic crystal composed of rectangular dielectric rods in air. T
primitive unit cell is arrayed into an fct lattice.~b! Schematic con-
figuration of the first BZ of a face-centered tetragonal lattice and
corresponding high-symmetry points. Note that the coordin
frames in~a! and~b! are of 45° rotation with respect to each othe
7-5
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use the schemev5 f (kx ,ky ,kz) to solve the photonic band
structure. Other stacking directions do not possess this m
of superior geometrical configuration.

In the ~001! plane, the crystal has a primitive unit ce
arrayed into a square lattice with a size ofa. The calculation
is most convenient in theXYZ coordinate frame, where th
two unit vectors area15(a,0) anda25(0,a), while the third
unit vector along thez axis isa35(a/2,a/2,c0/2), reflecting
the fct lattice configuration. The coordinates of the hig
symmetry points in thisXYZ frame can be obtained by pe
forming a 45° coordinate-rotational transform over those
the X8Y8Z8 frame. We write them explicitly here:G(0,0,0),
X(p/a,p/a,0), T(p/a,p/a,p/c0), L(p/a,0,p/c0),
U(p/2a,0,p/c0), andZ(0,0,2p/c0). Following the numeri-
cal procedures of the eigenproblem schemev
5 f (kx ,ky ,kz), for each Bloch’s wave vector k
5(kx ,ky ,kz) within the first BZ, we have been able to d
termine the eigenfrequencyv that satisfies Eq.~12!. Figure 5
displays the lowest 4 photonic bands for a crystal withw
50.25a, h50.3125a, and refractive index of the rod as 3.
The results have been obtained by using a 737 plane waves
in the transfer-matrix computation. The photonic bands
exactly doubly degenerate along theG-Z direction, a natural
result is induced by the geometrical symmetry in this dir
tion. There appears a wide complete band gap with theT2
band andL3 band being the lower and upper band edg
respectively. The band gap is located between frequencie
about 0.376-0.453(2pc/a). As a comparison, we have ca
culated the photonic band structure of the same photo

FIG. 5. Diagram of photonic band structures along some hi
symmetry lines in the first BZ calculated by the plane-wave-ba
TMM for a 3D layer-by-layer photonic crystal. The crystal is of
rod-to-rod spacinga, a rod width and thickness of 0.25a and
0.3125a, and a refractive index of the rodsn53.4.
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crystal using the conventional 3D PWM@4–6#. The dia-
grams of the lowest 4 photonic bands are shown in Fig
where 93939 plane waves have been used. The ove
structure of the band diagram in Fig. 6 is similar to that
Fig. 5. However, there are small discrepancy concerning
absolute value of the eigenfrequency. For instance, it is
dent that the 3 and 4 bands in Fig. 5 are higher than in F
6, especially along theG-Z andG-X lines. The same for the
complete band gap. In Fig. 6 the complete band gap is ly
between 0.370 and 0.442(2pc/a), about two percents lowe
than in the TMM.

In order to understand the discrepancy between the
calculations, we have investigated the convergence beha
of the two methods by increasing the plane-wave numb
The positions of the complete band gapT2-L3 and the di-
rectional band gapsX2-X3 andZ2-Z3 are adopted as mir
rors to reflect the numerical convergency. The results
tained by the conventional PWM and the plane-wave ba
TMM are summarized in Tables I and II, respectively.
Table I, the plane-wave number is increased from 53535
to until 13313313. In Table II, the plane-wave number
increased from 535 to until 11311. It is quite evident that
the former method yields a convergency much slower th
the latter method. The latter method has already arrived a
accuracy better than 0.5% with a modest plane-wave num
of 737. In the former method, all band gaps continue
move to higher frequencies, especially for higher band ed
with a tendency to accord with the converged results giv
by the latter method. This can explain why in the 3 and
bands in Fig. 6 are 2% lower than in Fig. 5. The excelle
convergency of the TMM, achieved when applying optim
Fourier expansion rule to the field and dielectric functio

-
d

FIG. 6. Diagram of photonic band structures calculated by
conventional PWM for the same 3D layer-by-layer photonic crys
as in Fig. 5.
TABLE I. Convergency of the conventional PWM applied to the layer-by-layer photonic crystal.

Plane-wave number Complete band gap ~001! Band gap ~100! Band gap

53535 0.3664–0.4343 0.3484–0.5035 0.3539–0.4591
73737 0.3679–0.4392 0.3483–0.5026 0.3561–0.4663
93939 0.3696–0.4420 0.3487–0.5078 0.3579–0.4689

11311311 0.3708–0.4439 0.3490–0.5116 0.3592–0.4715
13313313 0.3715–0.4453 0.3491–0.5127 0.3599–0.4729
7-6
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TABLE II. Convergency of the plane-wave based TMM applied to the layer-by-layer photonic crys

Plane-wave number Complete band gap ~001! Band gap ~100! Band gap

535 0.3804–0.4556 0.3543–0.5320 0.3701–0.4824
737 0.3762–0.4530 0.3511–0.5247 0.3646–0.4823
939 0.3759–0.4522 0.3505–0.5239 0.3645–0.4816

11311 0.3759–0.4522 0.3504–0.5241 0.3645–0.4813
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can set a solid reference to the much more popular con
tional PWM. Fairly speaking, the convergency of this pop
lar method is not bad: Using not very large a number
plane-waves, 11311311, the predicted width of the com
plete band gap and other two directional band gaps is o
larger than the converged values by less than 1%. There
the wide photonic band gap in this class of layer-by-la
photonic crystal structures is robust irrespective of inac
racy in previous theoretical methods, and it has been veri
by numerous experimental tests. Very recently, the con
gence of the conventional PWM applied to another import
3D photonic crystal structure: diamond lattice of dielect
spherical particles in air has been carefully investigated
comparing the PWM result with a convergent KKR calcu
tion @23#, and much poorer convergency is found for t
PWM @24# compared to the layer-by-layer structure stud
here. For instance, the complete band gap size in the cl
packed diamond lattice is found to be drastically reduc
from the earliest PWM calculation of about 15%@4# to the
KKR calculation of 4.2%. Before final conclusion is draw
towards this striking contrast, it might be helpful to empl
other independent efficient approach, such as the pla
wave-based TMM presented in this paper, to have a dou
check.

V. THIRD SCHEME TO SOLVE THE PHOTONIC
BAND STRUCTURES

In the above sections we have discussed two differ
numerical schemes to solve the traditional band diagram
means of the plane-wave-based TMM. In scheme 1,kz
5 f (kx ,ky ,v), the transfer matrix is calculated exactly alon
the stacking direction parallel to the high-symmetry lines
the band diagram. In principle, several stacking directio
are needed to account for the whole diagram. In schem
v5 f (kx ,ky ,kz), one can calculate the whole diagram
photonic band structures by looking at only one single sta
ing direction. In scheme 1, very reliable standard eigenpr
lem solution tools are ready for use, while in scheme 2, c
sideration of only one stacking direction can reduce
numerical burden. More importantly, it is more flexible
select a stacking direction along which fast converged res
can be achieved by using optimal Fourier expansion rule
may be valuable that one combines the advantages of t
two schemes.

Let us take the layer-by-layer photonic crystal as an
ample. To guarantee fast numerical convergence, we sh
consider the~001! stacking direction. Now for eachk
5(kx ,ky ,kz), which is usually lying at an arbitrary high
symmetry line, we project it onto the stacking direction, a
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obtain the lateral wave vector in this plane, which iskx and
ky . Then we use the schemekz85 f (kx ,ky ,v) to calculate
the dispersion along the~001! direction. Matchingkz8 to the
prefixed value ofkz either through simple searching or inte
polation technique, we can pick up the eigenfrequency c
responding tok, namely, we have arrived at the schemev
5 f (kx ,ky ,kz). To speed up the numerical solution, we c
first find out the eigenfrequencies at one wave vector, s
the high-symmetry pointZ in Fig. 5. Then we start from this
point, and carry out the above numerical procedure in
adjacent small frequency range to find out the eigen
quency of the adjacent wave vector for each photonic ba
Repeating this procedure, we can efficiently work out t
whole traditional band diagrams.

Similar technique has been used in Refs.@12# and @15#,
where the overall photonic band structures are investiga
by projecting a Bloch’s wave vector in traditional first B
onto the surface Brillouin zone~SBZ! corresponding to the
2D lattice in the lateralXOY plane and then employing th
schemekz5 f (kx ,ky ,v) to get the solution. To appreciat
the advantage of this scheme, the projection photonic b
structures@characterized byv –(kx ,ky)] along the high-
symmetry lines in the SBZ are plotted, consisting clusters
occupied regions~Bloch’s modes! separated by unoccupie
regions~directional band gaps!. In such forms of band dia-
grams, only the size of complete band gaps are visible, ye
exact position~upper and lower bands! is invisible ~which
usually lies at certain high-symmetry points in tradition
BZ!, so is the size of band gaps along other important cr
talline directions. To appreciate these features from dir
eye view, traditional band diagrams are preferred, and t
the above simple third scheme can find its usage.

Finally, it seems interesting to compare the current pla
wave based TMM with the more popular real-space TM
@7,8#. Both methods can handle the wave scattering b
finite photonic crystal slab and the photonic band structu
for an infinite system. The plane-wave-based method is m
flexible in that it can deal with any periodic system wi
arbitrary lattice types and unit cell configurations. In co
trast, the real-space TMM basically is limited to orthogon
lattices due to its use of cubic grid meshes in the fini
difference scheme. Another advantage for the plane-wa
based method is that a lot of advanced analysis tools h
been developed in the grating community in the last sev
decades, in regards to, for example, the convergence p
lem. As a comparison, in the real-space method, few stu
have been reported on such problems, which is essential
important to a numerical method. However, the real-sp
scheme is superior to the plane-wave-based scheme in
important aspect, that is, it is much faster in constructing
7-7
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transfer matrix for a general slab than the plane-wave-ba
method, because it does not need to solve the eigenpro
for each slice of lamellar grating, which is rather time co
suming.

VI. SUMMARY AND CONCLUSION

In summary, we have extended the plane-wave-ba
TMM from its routine service as a powerful tool to solve e
wave scattering by a general multilayer grating and photo
crystal slab to handle the photonic band structure for an
finite system. The numerically stable scattering-matrix al
rithm has been used, and three different numerical sche
to solve the eigenproblem corresponding to traditional b
diagram have been proposed and discussed in detail.
plane-wave-based TMM allows one to handle arbitrary
tice types and unit-cell configurations. Advanced analy
tools invented in the grating community that allow for ef
cient Fourier expansion of the dielectric function and e
fields with discontinuities occuring at the boundary of diffe
ent material domains have been exploited to greatly spee
the convergence of numerical computation for 2D and
systems. Detailed investigation of the numerical converge
behavior has been carried out for an important class of
layer-by-layer photonic crystals by means of both the pla
wave-based TMM and the conventional PWM. The resu
clearly reveal much better convergency of the TMM.
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APPENDIX A: EIGENMODES WITHIN A 2D LAMELLAR
GRATING SLICE AND THE RESULTING

TRANSFER MATRIX

In this appendix we will present a detailed description
how the eigenmode of em fields within a 2D lamellar grati
slice is solved under the plane-wave basis, and how
transfer-matrix connecting fields at the two hand sides of
grating slice is related to these eigenmodes.

We start from Maxwell’s equations,

“3E~r !5 ik0H~r !, “3H~r !52 ik0e~r !E~r !.
~A1!

Here e(r ) is the periodic dielectric function of the gratin
slice, it is homogeneous along thez axis. We can rewrite Eq
~A1! into six partial-differential equations satisfied b
(Ex ,Ey ,Ez) and (Hx ,Hy ,Hz). The z components of em
fields Ez and Hz can be deleted from these six equation
leading to the following four coupled equations:

]

]z
Ex5

1

2 ik0

]

]x F1

e S ]

]x
Hy2

]

]y
HxD G1 ik0Hy , ~A2!

]

]z
Ey5

1

2 ik0

]

]y F1

e S ]

]x
Hy2

]

]y
HxD G2 ik0Hx , ~A3!
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]

]z
Hx5

1

ik0

]

]x S ]

]x
Ey2

]

]y
ExD2 ik0eEy , ~A4!

]

]z
Hy5

1

ik0

]

]y S ]

]x
Ey2

]

]y
ExD1 ik0eEx . ~A5!

We can further write down the plane-wave expansion exp
sions of the em fields@already given in Eqs.~1! and~2!# and
the dielectric function,

e~r !5(
i j

e i j e
iGi j •r, ~A6!

e21~r !5(
i j

e i j
21eiGi j •r. ~A7!

Substituting them into Eqs.~A2!–~A5! yields

]

]z
Ei j ,x5

2 ik i j ,x

k0
(
mn

e i j ;mn
21 ~kmn,xHmn,y2kmn,yHmn,x!

1 ik0Hi j ,y , ~A8!

]

]z
Ei j ,y5

2 ik i j ,y

k0
(
mn

e i j ;mn
21 ~kmn,xHmn,y2kmn,yHmn,x!

2 ik0Hi j ,x , ~A9!

]

]z
Hi j ,x5

ik i j ,x

k0
(
mn

d i j ;mn~kmn,xEmn,y2kmn,yEmn,x!

2 ik0(
mn

e i j ;mnEmn,y , ~A10!

]

]z
Hi j ,y5

ik i j ,x

k0
(
mn

d i j ;mn~kmn,xEmn,y2kmn,yEmn,x!

1 ik0(
mn

e i j ;mnEmn,x . ~A11!

Now define column vectorsE5(•••,Ei j ,x ,Ei j ,y ,•••)T and
H5(•••,Hi j ,x ,Hi j ,y ,•••)T, Eqs.~A8!–~A11! can be written
into a concise matrix form

]

]z
E5T1H,

]

]z
H5T2E, ~A12!

where the matricesT1 andT2 are defined as
7-8
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T1
i j ;mn5

i

k0
S ki j ,xe i j ;mn

21 kmn,y 2ki j ,xe i j ;mn
21 kmn,x1k0

2d i j ;mn

ki j ,ye i j ;mn
21 kmn,y2k0

2d i j ;mn 2ki j ,ye i j ;mn
21 kmn,x

D ,

T2
i j ;mn5

i

k0
S 2ki j ,xd i j ;mnkmn,y ki j ,xd i j ;mnkmn,x2k0

2e i j ;mn

2ki j ,yd i j ;mnkmn,y1k0
2e i j ;mn ki j ,yd i j ;mnkmn,x

D .
e

-

en
en

ne

e

e

in

ce

c-
ts
st
at-

-

i-
From Eq.~A12! we finally obtain an eigenproblem for th
electric field,

]2

]z2
E5~T1T2!E5PE. ~A13!

Now suppose we have usedN0 plane waves in the expan
sion, thenT1 , T2, and P are all (2N0)3(2N0) matrices.
Solution of Eq.~A13! will give us 2N0 eigenvalues~denoted
asb i

2 ,i 51,2, . . . ,2N0, with Im(b i)>0) of the matrix2P
52T1T2. In addition, the (2N0)3(2N0) matrix Sa , whose
j th column is the eigenvector corresponding to the eig
value b j

2 , can also be obtained simultaneously. The eig
mode corresponding tob i

2 is Ei8(z)5Ea,i
1 (z)1Ea,i

2 (z),
Ea,i

1 (z)5Ei
1eib i (z2zi 21), Ea,i

2 (z)5Ei
2e2 ib i (z2zi 21), where

Ei
1 and Ei

2 are both unknown variables. Further defi
column vector b5( . . . ,b i , . . . )T, Ea

1

5@ . . . ,Ea,i
1 (z), . . . #T, and Ea

25@ . . . ,Ea,i
2 (z), . . . #T. The

electric field column vectorE are now expressed into th
superposition of all the eigenmodes,E5Sa(Ea

11Ea
2). The

corresponding magnetic field column vector are obtain
from Eq. ~A12! and reads H 5 T1

21] / ]zE
5 T1

21Sa] / ]z ( Ea
1 1Ea

2 ) 5 iT1
21Sab ( Ea

12Ea
2)5Ta(Ea

1

2Ea
2), whereTa5 iT1

21Sab. It proves convenient to write
down the electric and magnetic fields at an arbitrary po
inside the grating slice into a concise form:

S E~z!

H~z!
D 5S Sa Sa

Ta 2Ta
D S Ea

1~z!

Ea
2~z!

D . ~A14!

The em fields in the two air films around the grating sli
have been expressed in Eqs.~3! and~4!, and can be rewritten
in a way similar to Eq.~A14!. Match of boundary conditions
yields

S S0 S0

T0 2T0
D S V i 21

1

V i 21
2 D 5S Sa Sa

Ta 2Ta
D S Ea

1~zi 21!

Ea
2~zi 21!

D
~A15!

at the left interfacez5zi 21 and

S S0 S0

T0 2T0
D S V i

1

V i
2D 5S Sa Sa

Ta 2Ta
D S Ea

1~zi !

Ea
2~zi !

D ~A16!

at the right interfacez5zi . S0 andT0 are counterparts ofSa
and Ta in an air film. S05I , a unit matrix, andT0 is a
04660
-
-

d

t

block-diagonal matrix each block of which is a 232 matrix
already given byT0,i j in Eq. ~4!. Within the grating slice,

S Ea
1~zi !

Ea
2~zi !

D 5S eibh 0

0 e2 ibhD S Ea
1~zi 21!

Ea
2~zi 21!

D , ~A17!

whereh5zi2zi 21 is the thickness of the slice,eibh denotes
a (2N0)3(2N0) diagonal matrix whose element iseib i h, i
51,2, . . . ,2N0. Deleting @Ea

1(zi 21),Ea
2(zi 21)#T and

@Ea
1(zi),Ea

2(zi)#T from Eqs.~A15!–~A17! and making some
analytical derivations yields

S V i
1

V i
2D 5S a11 a12

a21 a22
D 21S eibh 0

0 e2 ibhD S a11 a12

a21 a22
D S V i 21

1

V i 21
2 D ,

~A18!

where a115
1
2 (Sa

21S01Ta
21T0), a125

1
2 (Sa

21S02Ta
21T0),

anda215a12, a225a11. Thus theT matrix for slicei is

Ti5S t11
i t12

i

t21
i t22

i D 5S a11 a12

a21 a22
D 21S eibh 0

0 e2 ibhD S a11 a12

a21 a22
D .

~A19!

Now it becomes clear why theT-matrix formalism is numeri-
cally unstable for thick gratings. Look at the two phase fa
tors eibh and e2 ibh. For those Bragg wave componen
whereb i has a significant imaginary part, one of them mu
be exponentially increasing through the whole slab of gr
ings, rendering numerical instability such as overflow.

In principle, theS matrix can be calculated from theT
matrix through transformation:s11

i 5t11
i 2t12

i @ t22
i #21t21

i , s12
i

5t12
i @ t22

i #21, s21
i 52@ t22

i #21t21
i , s22

i 5@ t22
i #21. However, be-

cause theT-matrix algorithm is not stable, we prefer to de
rive theS matrix for slicei directly from Eq.~A18! without
the aid of theT matrix, largely depending on analytical der
vation. The final answer is

si5S s11
i s12

i

s21
i s22

i D 5S p1t11p2t2 p1t21p2t1

p1t21p2t1 p1t11p2t2
D , ~A20!

where p15@a112eibha12a11
21eibha12#

21, p2

5a11
21eibha12@a112eibha12a11

21eibha12#
21, t15eibha11, and

t252a12. From Eq.~A20!, it is obvious thatsi is a block-
7-9
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symmetric matrix, reflecting the fact that the grating slice
symmetric with respect to its middle plane atz5(zi 21
1zi)/2.

APPENDIX B: EIGENMODES WITHIN A 1D LAMELLAR
GRATING SLICE

In this appendix we will derive the eigenmode of e
fields within a 1D lamellar grating slice directly from th
general 2D case. Both the TM and TE polarization mod
will be considered simultaneously.

In recent years, powerful analytical tools of Fourier e
pansion for the dielectric function and em fields applied t
1D grating have been developed. The optimal Fourier exp
sion rule can efficiently handle the subtle discontinuity oe
and em fields at the boundary of the two different mate
domains, and allows for accelerated numerical converge
@18,19#. These rules can be summarized as follows. Cons
D5eE, whereD andE are one of the three components
the electric displacement and electric field vectors, ifE is
continuous across the boundary, then the direct Fourier tr
formation overe should be used to Fourier transformD,
namely, Di5e i j Ej . Here doubly appearance of the inde
‘‘ j ’’ means summation over ‘‘j ’ ’ . If D is continuous across
the boundary, then the inverse rule of Fourier expansion o
e should be used,Di5@(1/e)# i j

21Ej , where@(1/e)#21 means
the inverse matrix of the Fourier transformation matrix of t
function 1/e.

Now suppose a 1D lamellar grating is periodic along thy
axis and homogeneous along thex axis. For the TM mode,
the field variables are (Ex ,Hy), while for the TE mode, the
field variables are (Ey ,Hx). Following the above rules an
using Eqs.~A12! and~A13!, the optimal form of the eigen
problem for the TM mode is

]2

]z2
Ex5~T1T2!Ex5PEx , ~B1!

where T1
j ;n5 ik0d j ;n , T2

j ;n5( i /k0)(2kj ,y
2 1k0

2e j ;n). For the
TE mode, we have
04660
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]2

]z2
Ey5~T1T2!Ey5PEy , ~B2!

where T1
j ;n5( i /k0)(kj ,ye j ;n

21kn,y2k0
2d j ;n), T2

j ;n5

2 ik0@(1/e)# j ;n
21 . In the above,e j ;n is the direct Fourier ex-

pansion coefficient ofe(y). e j ;n
21 is obtained by the inverse

matrix of e j ;n , following from Dz5eEz in Eqs.~A1!–~A3!,
whereEz is always continuous at the boundary, since it
parallel to the domain wall of lamellar gratings
@(1/e(y))# j ;n

21 is obtained by first Fourier transform ove
1/e(y), then inverse the resulting matrix.

When the eigenmode within the 1D lamellar grating ha
been solved via Eqs.~B1! and~B2!, the corresponding trans
fer matrix, either theT matrix or S matrix, can be obtained
following the same procedure for the general 2D case
cussed in Appendix A.

APPENDIX C: OPTIMAL FOURIER EXPANSION RULE
FOR A LAYER-BY-LAYER PHOTONIC CRYSTAL

In this appendix we will present the optimal Fourier e
pansion rule for an important class of 3D photonic cryst
layer-by-layer photonic crystals. This can be done becaus
the special geometrical configuration of this kind of photon
crystal, where each layer of rectangular rods in air is a
lamellar grating, so that the effective and efficient rule d
veloped in Appendix B can be directly utilized. The rap
convergence behavior of numerical calculations allow us
use this as a reference to appraise the convergency o
conventional PWM when applied to this important 3D ph
tonic crystal structure.

In Appendix A, we have not used the optimal Fouri
expansion rule for the discontinuous dielectric functionse(r )
and e21(r ) in a 3D photonic crystal. Now following the
rules described in Appendix B, for a layer where the rods
along thex-axis direction,T1 andT2 in Eq. ~A12! should be
written as
or
T1
i j ;mn5

i

k0
S ki j ,xe i j ;mn

21 kmn,y 2ki j ,xe i j ;mn
21 kmn,x1k0

2d i j ;mn

ki j ,ye i j ;mn
21 kmn,y2k0

2d i j ;mn 2ki j ,ye i j ;mn
21 kmn,x

D ,

T2
i j ;mn5

i

k0
S 2ki j ,xd i j ;mnkmn,y ki j ,xd i j ;mnkmn,x2k0

2F S 1

e D G
i j ;mn

21

2ki j ,yd i j ;mnkmn,y1k0
2e i j ;mn ki j ,yd i j ;mnkmn,x

D .

The reason is thatEx andEz are both parallel to the air-rod boundary, whileEy is perpendicular to the air-rod boundary. F
the same reason, for a layer where the rods are along they-axis direction,T1 andT2 in Eq. ~A12! should be

T1
i j ;mn5

i

k0
S ki j ,xe i j ;mn

21 kmn,y 2ki j ,xe i j ;mn
21 kmn,x1k0

2d i j ;mn

ki j ,ye i j ;mn
21 kmn,y2k0

2d i j ;mn 2ki j ,ye i j ;mn
21 kmn,x

D ,
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T2
i j ;mn5

i

k0
S 2ki j ,xd i j ;mnkmn,y ki j ,xd i j ;mnkmn,x2k0

2e i j ;mn

2ki j ,yd i j ;mnkmn,y1k0
2F S 1

e D G
i j ;mn

21

ki j ,yd i j ;mnkmn,x
D .
r
ng
ith
ng

ple
he
It should be noted that until now, optimal Fourie
expansion rules as powerful as the above for 1D grati
are still to be found for a general 3D photonic crystal w
arbitrary geometrical configuration, although promisi
progress has been made@18,19#. For a 3D photonic
-

v

y

s

04660
s
crystal built from spherical particles, such as the sim
cubic lattice considered in Sec. III, we simply use t
direct rule of Fourier expansion rule fore i j ;mn , and inverse
rule for e i j ;mn

21 in the matricesT1 andT2 in ~A12! of Appen-
dix A.
e

d,
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